Nested arithmetic progressions of oscillatory phases in Olsen's enzyme reaction model.
نویسندگان
چکیده
We report some regular organizations of stability phases discovered among self-sustained oscillations of a biochemical oscillator. The signature of such organizations is a nested arithmetic progression in the number of spikes of consecutive windows of periodic oscillations. In one of them, there is a main progression of windows whose consecutive number of spikes differs by one unit. Such windows are separated by a secondary progression of smaller windows whose number of spikes differs by two units. Another more complex progression involves a fan-like nested alternation of stability phases whose number of spikes seems to grow indefinitely and to accumulate methodically in cycles. Arithmetic progressions exist abundantly in several control parameter planes and can be observed by tuning just one among several possible rate constants governing the enzyme reaction.
منابع مشابه
On rainbow 4-term arithmetic progressions
{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...
متن کاملArithmetic Progressions on Conics.
In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose x-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We als...
متن کاملA 43 INTEGERS 12 ( 2012 ) ARITHMETIC PROGRESSIONS IN THE POLYGONAL NUMBERS Kenneth
In this paper, we investigate arithmetic progressions in the polygonal numbers with a fixed number of sides. We first show that four-term arithmetic progressions cannot exist. We then describe explicitly how to find all three-term arithmetic progressions. Finally, we show that not only are there infinitely many three-term arithmetic progressions, but that there are infinitely many three-term ar...
متن کاملForbidden arithmetic progressions in permutations of subsets of the integers
Permutations of the positive integers avoiding arithmetic progressions of length 5 were constructed in (Davis et al, 1977), implying the existence of permutations of the integers avoiding arithmetic progressions of length 7. We construct a permutation of the integers avoiding arithmetic progressions of length 6. We also prove a lower bound of 1 2 on the lower density of subsets of positive inte...
متن کاملOn the maximal length of arithmetic progressions∗
This paper is a continuation of Benjamini, Yadin and Zeitouni’s paper [4] on maximal arithmetic progressions in random subsets. In this paper the asymptotic distributions of the maximal arithmetic progressions and arithmetic progressions modulo n relative to an independent Bernoulli sequence with parameter p are given. The errors are estimated by using the Chen-Stein method. Then the almost sur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 25 6 شماره
صفحات -
تاریخ انتشار 2015